Question	Scheme	Marks	AOs
1(a)	Area = $8 \times 1.5 = 12 \text{ cm}^2$ Frequency = $8 \text{ so } 1 \text{ cm}^2 = \frac{2}{3}$ hour (o.e.)	M1	3.1a
	Frequency of 12 corresponds to area of 18 so height = $18 \div 2.5 = 7.2$ (cm)	Al	1.1b
	Width = $5 \times 0.5 = 2.5$ (cm)	Blcao	1.1b
		(3)	
(b)	$[\overline{y} =] \frac{205.5}{31} = \text{awrt } 6.63$	B1cao	1.1b
	$\left[\sigma_{y}=\right]\sqrt{\frac{1785.25}{31}-\overline{y}^{2}} = \sqrt{13.644641} = \text{awrt } 3.69$		
		M1	1.1a
	allow $[s=] \sqrt{\frac{1785.25 - 31\overline{y}^2}{30}} = $ awrt 3.75	A1	1.1b
		(3)	
(c)	Mean of Heathrow is higher than Hurn and standard deviation smaller suggesting Heathrow is more reliable	M1	2.4
	Hurn is South of Heathrow so does <u>not</u> support his belief	A1	2.2b
		(2)	
(d)	$\overline{x} + \sigma \approx 10.3$ so number of days is e.g. $\frac{(11 - "10.3")}{3} \times 8 (+5)$	M1	1.1b
	= 6.86 so 7 days	Al	1.1b
		(2)	
(e)	[$H = \text{no. of hours}$] P($H > 10.3$) or P($Z > 1$) = [0.15865]	M1	3.4
	Predict $31 \times 0.15865 = 4.9 \text{ or } 5 \text{ days}$	A1	1.1b
		(2)	
(f)	(5 or) 4.9 days < (7 or) 6.9 days so model may not be suitable	B1	3.5a
		(1)	
			narks)

Ques	tion 1 continued
Notes	5:
(a)	
M1:	for clear attempt to relate the area to frequency. Can also award if
	their height \times their width = 18
A1:	for height = 7.2 (cm)
(b)	
M1:	for a correct expression for σ or <i>s</i> , can ft their value for mean
A1:	awrt 3.69 (allow <i>s</i> = 3.75)
(c)	
M1:	for a suitable comparison of standard deviations to comment on reliability.
A1:	for stating Hurn is south of Heathrow and a correct conclusion
(d)	
M1:	for a correct expression – ft their $\overline{x} + \sigma \approx 10.3$
A1:	for 7 days but accept 6 (rounding down) following a correct expression
(e)	
M1:	for a correct probability attempted
A1:	for a correct prediction
(f)	
B1:	for a suitable comparison and a compatible conclusion

Questi	on Scheme	Marks	AOs
2(a)	e.g. It requires extrapolation so will be unreliable (o.e.)	B1	1.2
		(1)	
(b)	e.g. Linear association between <i>w</i> and <i>t</i>	B1	1.2
		(1)	
(c)	H ₀ : $\rho = 0$ H ₁ : $\rho > 0$	B1	2.5
	Critical value 0.5822	M1	1.1a
	Reject H ₀		
	There is evidence that the product moment correlation coefficient is greater than 0	Al	2.2b
		(3)	
(d)	Higher \overline{t} suggests overseas and not Perthlower wind speed so perhaps not close to the sea so suggest Beijing	B1	2.4
		(1)	
		(6 marks)
Notes:			
(a) B1:	for a correct statement (unreliable) with a suitable reason		
(b)			
	or a correct statement		
(c)			
	For both hypotheses in terms of ρ		
	for selecting a suitable 5% critical value compatible with their H_1		
A1:	for a correct conclusion stated		
(d) B1:	for suggesting Beijing with some supporting reason based on t or w		
	Allow Jacksonville with a reason based just on higher \overline{t}		

Q3(a)	Question	Scheme	Marks	AOs
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Q3(a)	49 50.75		
$\therefore \mu = 50$ A1cao 1.1b P(49 < L < 50.75) M1 3.4 = 0.9104 awrt 0.910 A1ft 1.1b (b) S = number of strips that cannot be used so S~B(10, 0.090) M1 3.3 = P(S ≤ 3) = 0.991166 awrt 0.991 A1 1.1b (c) H_0 : $\mu = 50.1$ H_1 : $\mu > 50.1$ B1 2.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M1 3.3 P($\overline{X} > 50.4$) = 0.0264 A1 3.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and not significant A1 1.1b There is insufficient evidence that the mean length of strips is A1 2.2b		P(L > 50.98) = 0.025	Blcao	3.4
$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\therefore \ \frac{50.98 - \mu}{0.5} = 1.96$	M1	1.1b
$= 0.9104 \text{awrt } \underline{0.910} \qquad \text{A1ft} 1.1b$ $= 0.9104 \text{awrt } \underline{0.910} \qquad \text{A1ft} 1.1b$ (5) (b) $S = \text{number of strips that cannot be used so } S \sim B(10, 0.090) \qquad \text{M1} 3.3$ $= P(S \leqslant 3) = 0.991166 \text{awrt } 0.991 \qquad \text{A1} 1.1b$ (2) (c) $H_0: \mu = 50.1 H_1: \mu > 50.1 \qquad B1 2.5$ $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right) \text{ and } \overline{X} > 50.4 \qquad \text{M1} 3.3$ $P(\overline{X} > 50.4) = 0.0264 \qquad \text{A1} 3.4$ $p = 0.0264 > 0.01 \text{ or } z = 1.936 < 2.3263 \text{ and not} \qquad \text{A1} 1.1b$ There is insufficient evidence that the <u>mean length of strips is greater than 50.1} \qquad \text{A1} 2.2b</u>		$\therefore \mu = 50$	Alcao	1.1b
$\frac{ x ^{-1} + x ^{-$		P(49 < <i>L</i> < 50.75)	M1	3.4
(b) $S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$ M13.3 $= P(S \leqslant 3) = 0.991166$ awrt 0.991 A11.1b(2)(2)(c)H_0: $\mu = 50.1$ H_1: $\mu > 50.1$ B12.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M13.3 $P(\overline{X} > 50.4) = 0.0264$ A13.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and not significantA11.1bThere is insufficient evidence that the mean length of strips is greater than 50.1A12.2b		= 0.9104 awrt <u>0.910</u>	A1ft	1.1b
$= P(S \le 3) = 0.991166 \text{ awrt } 0.991 \qquad A1 \qquad 1.1b$ (2) $(c) \qquad H_0: \mu = 50.1 \qquad H_1: \mu > 50.1 \qquad B1 \qquad 2.5$ $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right) \text{ and } \overline{X} > 50.4 \qquad M1 \qquad 3.3$ $P(\overline{X} > 50.4) = 0.0264 \qquad A1 \qquad 3.4$ $p = 0.0264 > 0.01 \text{ or } z = 1.936 < 2.3263 \text{ and not} \qquad A1 \qquad 1.1b$ There is insufficient evidence that the <u>mean length of strips is greater than 50.1} \qquad A1 \qquad 2.2b</u>			(5)	
Image: Interview of the i	(b)	$S =$ number of strips that cannot be used so $S \sim B(10, 0.090)$	M1	3.3
(c) $H_0: \mu = 50.1$ $H_1: \mu > 50.1$ B12.5 $\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M13.3 $P(\overline{X} > 50.4) = 0.0264$ A13.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and notA11.1bThere is insufficient evidence that the mean length of strips is greater than 50.1		$= P(S \leq 3) = 0.991166$ awrt 0.991	A1	1.1b
$\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$ M13.3 $P(\overline{X} > 50.4) = 0.0264$ A13.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and notA11.1bThere is insufficient evidence that the mean length of strips is greater than 50.1			(2)	
P($\overline{X} > 50.4$) = 0.0264A13.4 $p = 0.0264 > 0.01$ or $z = 1.936 < 2.3263$ and notA11.1bsignificantA11.1bThere is insufficient evidence that the mean length of strips is greater than 50.1	(c)	$H_0: \mu = 50.1$ $H_1: \mu > 50.1$	B1	2.5
p = 0.0264 > 0.01 or $z = 1.936 < 2.3263$ and notA11.1bSignificantThere is insufficient evidence that the mean length of strips is greater than 50.1A12.2b		$\overline{X} \sim N\left(50.1, \frac{0.6^2}{15}\right)$ and $\overline{X} > 50.4$	M1	3.3
significantA11.10There is insufficient evidence that the mean length of strips is greater than 50.1A12.2b		$P(\bar{X} > 50.4) = 0.0264$	A1	3.4
greater than 50.1 A1 2.20			A1	1.1b
(5)			A1	2.2b
			(5)	

Ques	tion 3 continued	
Notes	s:	
(a)		
1 st M	1: for standardizing with μ and 0.5 and setting equal to a z value ($ z > 1$)	
2 nd M	1: for attempting the correct probability for strips that can be used	
2 nd A	1ft: awrt 0.910 (allow ft of their μ)	
(b)		
M1:	for identifying a suitable binomial distribution	
A1:	awrt 0.991 (from calculator)	
(c)		
B1:	hypotheses stated correctly	
M1:	for selecting a correct model (stated or implied)	
1 st A1	: for use of the correct model to find $p = awrt 0.0264$ (allow $z = awrt 1.94$)	
2 nd A	1: for a correct calculation, comparison and correct statement	
3rd A1	1: for a correct conclusion in context mentioning "mean length" and 50.1	

Question	Scheme	Marks	AOs
4(a)	$P(A' B') = \frac{P(A' \cap B')}{P(B')} \text{ or } \frac{0.33}{0.55}$	M1	3.1a
	$= \frac{3}{5}$ or 0.6	A1	1.1b
		(2)	
(b)	e.g. $P(A) \times P(B) = \frac{7}{20} \times \frac{9}{20} = \frac{63}{400} \neq P(A \cap B) = 0.13 = \frac{52}{400}$ or $P(A' \mid B') = 0.6 \neq P(A') = 0.65$	B1	2.4
		(1)	
(c)		B1	2.5
	В	M1	3.1a
		Al	1.1b
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	M1	1.1b
		Al	1.1b
		(5)	
(d)	$P(B \cup C)' = 0.22 + 0.22 \text{ or } 1 - [0.56]$ or $1 - [0.13 + 0.23 + 0.09 + 0.11]$ o.e.	M1	1.1b
	= 0.44	A1	1.1b
		(2)	
		(1	0 marks)
A1: a co	a correct ratio of probabilities formula and at least one correct v rrect answer	value.	
(b) for a	a fully correct explanation: correct probabilities and correct cor	nparisons.	
inte M1: for A1: for M1: for	box with <i>B</i> intersecting <i>A</i> and <i>C</i> but <i>C</i> not intersecting <i>A</i> .(Or ac resecting circles, but with zeros entered for $A \cap C$ and $A \cap B \cap$ method for finding P($B \cap C$) 0.09 0.13 and their 0.09 in correct places and method for their 0.23 y correct	-	В0
(d)	a correct expression – ft their probabilities from their Venn diag	gram.	

Question	Scheme	Marks	AOs
5 (a)	The seeds would be destroyed in the process so they would have none to sell	B1	2.4
		(1)	
(b)	[$S =$ no. of seeds out of 24 that germinate, $S \sim B(24, 0.55)$]		
	$T =$ no. of trays with at least 15 germinating. $T \sim B(10, p)$	M1	3.3
	$p = P(S \ge 15) = 0.299126$	A1	1.1b
	So $P(T \ge 5) = 0.1487$ awrt <u>0.149</u>	Al	1.1b
		(3)	
(c)	n is large and p close to 0.5	B1	1.2
		(1)	
(d)	<i>X</i> ~N(132, 59.4)	B1	3.4
	$P(X \ge 149.5) = P\left(Z \ge \frac{149.5 - 132}{\sqrt{59.4}}\right)$	M1	1.1b
	= 0.01158 awrt <u>0.0116</u>	Alcso	1.1b
		(3)	
(e)	e.g The probability is very small therefore there is evidence that the company's claim is incorrect.	B1	2.2b
		(1)	
		()) marks)
Notes: (a)			
B1: cao			
	selection of an appropriate model for T a correct value of the parameter p (accept 0.3 or better) awrt 0.149		
(c) B1: both	n correct conditions		
	correct normal distribution correct use of continuity correction		
(e) B1: corr	ect statement		

Question	Scheme	Marks	AOs
6	Integrate a w.r.t. time	M1	1.1a
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + \mathbf{C} \text{ (allow omission of } \mathbf{C})$	A1	1.1b
	$\mathbf{v} = \frac{5t^2}{2}\mathbf{i} - 10t^{\frac{3}{2}}\mathbf{j} + 20\mathbf{i}$	A1	1.1b
	When $t = 4$, v = 60 i - 80 j	M1	1.1b
	Attempt to find magnitude: $\sqrt{(60^2 + 80^2)}$	M1	3.1a
	Speed = 100 m s^{-1}	Alft	1.1b
		1	(6 marks)
Notes:			
1 st M1: for	integrating a w.r.t. time (powers of <i>t</i> increasing by 1)		
	a correct v expression without C		
2nd A1: for	a correct v expression including C		
2nd M1: for	putting $t = 4$ into their v expression		
3rd M1. for	finding magnitude of their y		

3rd M1: for finding magnitude of their v 3rd A1: ft for 100 m s⁻¹, follow through on an incorrect v

Question	Scheme	Marks	AOs	
7(a)	$R = mg\cos\alpha$	B1	3.1b	
	Resolve parallel to the plane	M1	3.1b	
	$-F - mg\sin\alpha = -0.8mg$	A1	1.1b	
	$F = \mu R$	M1	1.2	
	Produce an equation in μ only and solve for μ	M1	2.2a	
	$\mu = \frac{1}{4}$	A1	1.1b	
		(6)		
(b)	Compare $\mu mg \cos \alpha$ with $mg \sin \alpha$	M1	3.1b	
	Deduce an appropriate conclusion	A1 ft	2.2a	
		(2)		
			(8 marks)	
Notes:				
(a)				
	$= mg\cos\alpha$			
	esolving parallel to the plane			
	correct equation use of $F = \mu R$			
	•			
	eliminating F and R to give a value for μ			
2nd A1: for μ	$l = \frac{1}{4}$			
(b)	-			
. ,	paring size of limiting friction with weight component do	wn the plane		
Alft: for an appropriate conclusion from their values				

Question	Scheme	Marks	AOs	
8(a)	Use of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$: $(10.5\mathbf{i} - 0.9\mathbf{j}) = 0.6\mathbf{j} + 15\mathbf{a}$	M1	3.1b	
	$a = (0.7i - 0.1j) \text{ m s}^{-2}$ Given answer	A1	1.1b	
		(2)		
(b)	Use of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$	M1	3.1b	
	$\mathbf{r} = 0.6\mathbf{j} \ t + \frac{1}{2} (0.7\mathbf{i} - 0.1\mathbf{j}) \ t^2$	A1	1.1b	
		(2)		
(c)	Equating the i and j components of r	M1	3.1b	
	$\frac{1}{2} \leftarrow 0.7 t^2 = 0.6 t - \frac{1}{2} \leftarrow 0.1 t^2$	A1ft	1.1b	
	t = 1.5	A1	1.1b	
		(3)		
(d)	Use of $v = u + at$: $v = 0.6j + (0.7i - 0.1j) t$	M1	3.1b	
	Equating the \mathbf{i} and \mathbf{j} components of \mathbf{v}	M1	3.1b	
	t = 0.75	A1 ft	1.1b	
		(3)		
		(1	0 marks)	
	se of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ iven answer correctly obtained			
	se of $\mathbf{r} = \mathbf{u}t + \frac{1}{2}\mathbf{a}t^2$			
A1: for a	correct expression for \mathbf{r} in terms of t			
Alft: for a	for equating the i and j components of their r for a correct equation following their r for $t = 1.5$			
M1: for e	se of $\mathbf{v} = \mathbf{u} + \mathbf{a}t$ for a general t quating the i and j components of their \mathbf{v} = 0.75, or a correct follow through answer from an incorr	rect equation		

Question	Scheme	Marks	AOs
9(a)	Take moments about A		
	(or any other complete method to	M1	3.3
	produce an equation in S , W and α only)		
	$Wa\cos\alpha + 7W2a\cos\alpha = S 2a\sin\alpha$	Al	1.1b
		A1	1.1b
	Use of $\tan \alpha = \frac{5}{2}$ to obtain S	M1	2.1
	S = 3W *	A1*	2.2a
		(5)	
(b)	R = 8W	B1	3.4
	$F = \frac{1}{4} R (= 2W)$	M1	3.4
	$P_{\text{MAX}} = 3W + F$ or $P_{\text{MIN}} = 3W - F$	M1	3.4
	$P_{\text{MAX}} = 5W$ or $P_{\text{MIN}} = W$	A1	1.1b
	$W \le P \le 5W$	A1	2.5
		(5)	
(c)	M(A) shows that the reaction on the ladder at B is unchanged	M1	2.4
	also <i>R</i> increases (resolving vertically)	M1	2.4
	which increases max F available	M1	2.4
		(3)	
		(13 marks)

Question 9 continued Notes:				
1 st M1 : for producing an equation in S, W and α only				
1 st A1: for an equation that is correct, or which has one error or omission				
2nd A1: for a fully correct equation				
2nd M1: for use of $\tan \alpha = \frac{5}{2}$ to obtain S in terms of W only				
3^{rd} A1*: for given answer $S = 3W$ correctly obtained				
(b)				
B1: for $R = 8W$				
1 st M1: for use of $F = \frac{1}{4} R$				
2nd M1: for either $P = (3W + \text{their } F)$ or $P = (3W - \text{their } F)$				
1 st A1: for a correct max or min value for a correct range for <i>P</i>				
2nd A1: for a correct range for <i>P</i>				
(c)				
1 st M1: for showing, by taking moments about A, that the reaction at B is unchanged by the builder's assistant standing on the bottom of the ladder				
2^{nd} M1: for showing, by resolving vertically, that <i>R</i> increases as a result of the builder's assistant standing on the bottom of the ladder				
3rd M1: for concluding that this increases the limiting friction at <i>A</i>				

uestion	Scheme	Marks	AOs
10(a)	Using the model and horizontal motion: $s = ut$	M1	3.4
	$36 = Ut\cos\alpha$	A1	1.1b
	Using the model and vertical motion: $s = ut + \frac{1}{2}at^2$	M1	3.4
	$-18 = Ut\sin\alpha - \frac{1}{2}gt^2$	A1	1.1b
	Correct strategy for solving the problem by setting up two equations in t and U and solving for U	M1	3.1b
	<i>U</i> = 15	A1	1.1b
		(6)	
(b)	Using the model and horizontal motion: $U\cos\alpha$ (12)	B1	3.4
	Using the model and vertical motion: $v^2 = (U\sin\alpha)^2 + 2(-10)(-7.2)$	M1	3.4
	v = 15	A1	1.1b
	Correct strategy for solving the problem by finding the horizontal and vertical components of velocity and combining using Pythagoras: Speed = $\sqrt{(12^2 + 15^2)}$	M1	3.1b
	$\sqrt{369} = 19 \text{ m s}^{-1} (2\text{sf})$	A1 ft	1.1b
		(5)	
(c)	Possible improvement (see below in notes)	B1	3.5c
	Possible improvement (see below in notes)	B1	3.5c
		(2)	
		(13 mark

Question 10 continued				
Notes:				
(a)				
1 st M1: for use of $s = ut$ horizontally				
1 st A1: for a correct equation				
2nd M1: for use of $s = ut + \frac{1}{2}at^2$ vertically				
2 nd A1: for a correct equation				
3rd M1: for correct strategy (need both equations)				
2nd A1: for $U = 15$				
(b)				
B1: for $U\cos\alpha$ used as horizontal velocity con	nponent			
1 st M1: for attempt to find vertical component				
1 st A1: for 15				
2 nd M1: for correct strategy (need both components)				
2 nd A1ft: for 19 m s ⁻¹ (2sf) following through on incorrect component(s)				
(c)				
B1, B1: for any two of				
e.g. Include air resistance in the model of t	he motion			
e.g. Use a more accurate value for g in the	model of the motion			
e.g. Include wind effects in the model of th	e motion			
e.g. Include the dimensions of the stone in	the model of the motion			