Uses $y = mx + c$ with both (3, 1) and (4, -2) and attempt to find m		
or c	M1	1.1b
m = -3	A1	1.1b
c = 10 so y = -3x + 10 o.e.	A1	1.1t
	(3)	
Uses $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ with both (3, 1) and (4, -2)	M1	1.1b
Gradient simplified to -3 (may be implied)	A1	1.1t
y = -3x + 10 o.e.	A1	1.1t
	(3)	
Uses $ax + by + k = 0$ and substitutes both $x = 3$ when $y = 1$ and $x = 4$ when $y = -2$ with attempt to solve to find a, b or k in terms of one of them	M1	1.1t
Obtains $a = 3b$, $k = -10b$ or $3k = -10a$	A1	1.1t
Obtains $a = 3, b = 1, k = -10$ Or writes $3x + y - 10 = 0$ o.e.	A1	1.1t
	(3)	
	(7 n	narks
d correct use of the given coordinates d fractions simplified to -3 (in ways 1 and 2) d constants combined accurately		
1	$m = -3$ $c = 10 \text{ so } y = -3x + 10 \text{ o.e.}$ Uses $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ with both (3, 1) and (4, -2) Gradient simplified to -3 (may be implied) y = -3x + 10 o.e. Uses $ax + by + k = 0$ and substitutes both $x = 3$ when $y = 1$ and $x = 4$ when $y = -2$ with attempt to solve to find a, b or k in terms of one of them Obtains $a = 3b, k = -10b$ or $3k = -10a$ Obtains $a = 3, b = 1, k = -10$ Or writes $3x + y - 10 = 0$ o.e. I correct use of the given coordinates I fractions simplified to -3 (in ways 1 and 2)	$m = -3$ A1 $c = 10 \text{ so } y = -3x + 10 \text{ o.e.}$ A1(3)Uses $\frac{y - y_1}{x - x_1} = \frac{y_2 - y_1}{x_2 - x_1}$ with both (3, 1) and (4, -2)M1Gradient simplified to -3 (may be implied)A1 $y = -3x + 10$ o.e.A1(3)Uses $ax + by + k = 0$ and substitutes both $x = 3$ when $y = 1$ and $x = 4$ when $y = -2$ with attempt to solve to find a, b or k in terms of one of themObtains $a = 3b, k = -10b$ or $3k = -10a$ A1Obtains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1Otains $a = 3, b = 1, k = -10$ A1I correct use of the given coordinates I fractions simplified to -3 (in ways 1 and 2)

Paper 1: Pure Mathematics Mark Scheme

Note that a correct answer implies all three marks in this question

Question	Scheme	Marks	AOs
2	Attempt to differentiate	M1	1.1a
	$\frac{\mathrm{d}y}{\mathrm{d}x} = 4x - 12$	A1	1.1b
	Substitutes $x = 5 \implies \frac{dy}{dx} =$	M1	1.1b
	$\Rightarrow \frac{\mathrm{d}y}{\mathrm{d}x} = 8$	Alft	1.1b
		(4 n	narks)
Notes:			
	ferentiation implied by one correct term rrect differentiation		

M1: Attempts to substitute x = 5 into their derived function

A1ft: Substitutes x = 5 into their derived function correctly i.e. Correct calculation of their f'(5) so follow through slips in differentiation

Questior	Scheme	Marks	AOs
3 (a)	Attempts $\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$ or similar	M1	1.1b
	$\overrightarrow{AB} = 5\mathbf{i} + 10\mathbf{j}$	A1	1.1b
		(2)	
(b)	Finds length using 'Pythagoras' $ AB = \sqrt{(5)^2 + (10)^2}$	M1	1.1b
	$ AB = 5\sqrt{5}$	Alft	1.1b
		(2)	
		(4 n	narks)
Notes:			
	empts subtraction but may omit brackets (allow column vector notation)		
	rrect use of Pythagoras theorem or modulus formula using their answ $ =5\sqrt{5}$ ft from their answer to (a)	wer to (a)	
Note that	the correct answer implies M1A1 in each part of this question		

Quest	ion Scheme	Marks	AOs
4(a)	States or uses $f(+3) = 0$	M1	1.1b
	$4(3)^3 - 12(3)^2 + 2(3) - 6 = 108 - 108 + 6 - 6 = 0$ and so $(x - 3)$ is a factor	A1	1.1b
		(2)	
(b)	Begins division or factorisation so x $4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 +)$	M1	2.1
	$4x^3 - 12x^2 + 2x - 6 = (x - 3)(4x^2 + 2)$	A1	1.1b
	Considers the roots of their quadratic function using completion of square or discriminant	M1	2.1
	$(4x^2 + 2) = 0$ has no real roots with a reason (e.g. negative number does not have a real square root, or $4x^2 + 2 > 0$ for all x So $x = 3$ is the only real root of $f(x) = 0$ *	A1*	2.4
		(4)	
		(6 n	narks)
Notes			
(a) M1: A1:	States or uses $f(+3) = 0$ See correct work evaluating and achieving zero, together with correct conc	lusion	
(b)			
M1:	Needs to have $(x - 3)$ and first term of quadratic correct		
A1: M1:	Must be correct – may further factorise to $2(x - 3)(2x^2 + 1)$ Considers their quadratic for no real roots by use of completion of the square or consideration of discriminant then		
A1*:	A correct explanation		

Ques	ion Scheme	Marks	AOs		
5	$f(x) = 2x + 3 + 12 x^{-2}$	B1	1.1b		
	Attempts to integrate	M1	1.1a		
	$\int \left(+2x + 3 + \frac{12}{x^2} \right) dx = x^2 + 3x - \frac{12}{x}$				
	$\left((2\sqrt{2})^2 + 3(2\sqrt{2}) - \frac{12(\sqrt{2})}{2 \times 2} \right) - (-8)$				
	$=16+3\sqrt{2}*$	A1*	1.1b		
		(5 n	narks)		
Notes	:				
B1:	Correct function with numerical powers				
M1:	Allow for raising power by one. $x^n \rightarrow x^{n+1}$				
A1:	Correct three terms				
M1:	Substitutes limits and rationalises denominator				
A1*:	Completely correct, no errors seen				

Question	Scheme	Marks	AOs
6	Considers $\frac{3(x+h)^2 - 3x^2}{h}$	B1	2.1
	Expands $3(x+h)^2 = 3x^2 + 6xh + 3h^2$	M1	1.1b
	So gradient = $\frac{6xh + 3h^2}{h} = 6x + 3h$ or $\frac{6x\delta x + 3(\delta x)^2}{\delta x} = 6x + 3\delta x$	A1	1.1b
	States as $h \to 0$, gradient $\to 6x$ so in the limit derivative = $6x^*$	A1*	2.5
		(4 n	narks)
Notes:			
D1 Ci	$3(x+\delta x)^2-3x^2$		

B1: Gives correct fraction as in the scheme above or $\frac{3(x+\delta x)^2-3x^2}{\delta x}$

M1: Expands the bracket as above or $3(x + \delta x)^2 = 3x^2 + 6x\delta x + 3(\delta x)^2$

A1: Substitutes correctly into earlier fraction and simplifies

A1*: Uses Completes the proof, as above (may use $\delta x \rightarrow 0$), considers the limit and states a conclusion with no errors

Ques	tion Scheme	Marks	AOs
7(a	$\left(2 - \frac{x}{2}\right)^7 = 2^7 + {\binom{7}{1}}2^6 \cdot \left(-\frac{x}{2}\right) + {\binom{7}{2}}2^5 \cdot \left(-\frac{x}{2}\right)^2 + \dots$	M1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = 128 + \dots$	B1	1.1b
	$\left(2-\frac{x}{2}\right)^7 = \dots -224x + \dots$	A1	1.1b
	$\left(2 - \frac{x}{2}\right)^7 = \dots + \dots + 168x^2 (+ \dots)$	A1	1.1b
		(4)	
(b)	Solve $\left(2 - \frac{x}{2}\right) = 1.995$ so $x = 0.01$ and state that 0.01 would be substituted for x into the expansion	B1	2.4
		(1)	
		(5 n	narks)
Notes	:		
(a) M1: B1: A1: A1:	Need correct binomial coefficient with correct power of 2 and correct power Coefficients may be given in any correct form; e.g. 1, 7, 21 or ${}^{7}C_{0}$, ${}^{7}C_{1}$, ${}^{7}C_{1}$ Correct answer, simplified as given in the scheme Correct answer, simplified as given in the scheme Correct answer, simplified as given in the scheme		ılent
(b) B1:	Needs a full explanation i.e. to state $x = 0.01$ and that this would be substituted is a solution of $\left(2 - \frac{x}{2}\right) = 1.995$	tuted and th	nat it

Question	Sc	heme	Marks	AOs
8(a)	Way 1Finds third angle of triangle and uses or states $\frac{x}{\sin 60^{\circ}} = \frac{30}{\sin'' 50^{\circ''}}$	$\frac{\text{Way 2}}{\text{Finds third angle of triangle and}}$ Finds third angle of triangle and uses or states $\frac{y}{\sin 70^{\circ}} = \frac{30}{\sin'' 50^{\circ}''}$	M1	2.1
	So $x = \frac{30\sin 60^{\circ}}{\sin 50^{\circ}}$ (= 33.9)	So $y = \frac{30\sin 70^{\circ}}{\sin 50^{\circ}}$ (= 36.8)	A1	1.1b
	Area = $\frac{1}{2} \times 30 \times x \times \sin 70^{\circ}$ or	$\frac{1}{2} \times 30 \times y \times \sin 60$	M1	3.1a
	$= 478 \text{ m}^2$		A1ft	1.1b
			(4)	
(b)	Plausible reason e.g. Because the given to four significant figures Or e.g. The lawn may not be flat	e angles and the side length are not	B1	3.2b
			(1)	
	1		(5 n	narks)
Notes:				
A1: Find M1: Con	s sine rule with their third angle to ls expression for, or value of eithe ppletes method to find area of trian ains a correct answer for their valu	gle	8	
	nformation given in the question n so modelling by a plane figure may	nay not be accurate to 4sf or the lawn y not be accurate	may not b	be

Ques	tion	Scheme	Marks	AOs
9)	Uses $\sin^2 x = 1 - \cos^2 x \implies 12(1 - \cos^2 x) + 7\cos x - 13 = 0$	M1	3.1a
		$\Rightarrow 12\cos^2 x - 7\cos x + 1 = 0$	A1	1.1b
		Uses solution of quadratic to give $\cos x =$	M1	1.1b
		Uses inverse cosine on their values, giving two correct follow through values (see note)	M1	1.1b
		$\Rightarrow x = 430.5^\circ, 435.5^\circ$	A1	1.1b
			(5 r	narks)
Note	s:			
M1:	Uses	correct identity		
A1:	Corr	ect three term quadratic		
M1:		es their three term quadratic to give values for $\cos x$. (The correct an $x = \frac{1}{3}$ or $\frac{1}{4}$ but this is not necessary for this method mark)	swers are	
M1:	Uses inverse cosine on their values, giving two correct follow through values - may be outside the given domain			
		correct answers in the given domain		

Quest	ion Scheme	Marks	AOs
10	Realises that $k = 0$ will give no real roots as equation becomes 3 = 0 (proof by contradiction)	B1	3.1a
	(For $k \neq 0$) quadratic has no real roots provided $b^2 < 4ac$ so $16k^2 < 12k$	M1	2.4
	4k(4k-3) < 0 with attempt at solution	M1	1.1b
	So $0 < k < \frac{3}{4}$, which together with $k = 0$ gives $0 \le k < \frac{3}{4}$ *	A1*	2.1
		(4 n	narks)
Notes	:		
B1:	Explains why $k = 0$ gives no real roots		
M1:	Considers discriminant to give quadratic inequality – does not need the $k \neq$	0 for this	
	mark		
M1:	Attempts solution of quadratic inequality		
A1*:	Draws conclusion, which is a printed answer, with no errors (dependent on previous marks)	all three	

Question	Scheme	Marks	AOs		
11 (a) Way 1	Since x and y are positive, their square roots are real and so $(\sqrt{x} - \sqrt{y})^2 \ge 0$ giving $x - 2\sqrt{x}\sqrt{y} + y \ge 0$	M1	2.1		
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a		
		(2)			
Way 2 Longer method	Since $(x-y)^2 \ge 0$ for real values of x and y, $x^2 - 2xy + y^2 \ge 0$ and so $4xy \le x^2 + 2xy + y^2$ i.e. $4xy \le (x+y)^2$	M1	2.1		
	$\therefore 2\sqrt{xy} \le x + y \text{ provided } x \text{ and } y \text{ are positive and so}$ $\sqrt{xy} \le \frac{x + y}{2} *$	A1*	2.2a		
		(2)			
(b)	Let $x = -3$ and $y = -5$ then LHS = $\sqrt{15}$ and RHS= -4 so as $\sqrt{15} > -4$ result does not apply	B1	2.4		
		(1)			
		(3 n	narks)		
Notes:					
roo	Need two stages of the three stage argument involving the three stages, squaring, square rooting terms and rearranging Need all three stages making the correct deduction to achieve the printed result				
(b) B1: Ch	ooses two negative values and substitutes, then states conclusion				

Question		Scheme	Marks	AOs
12(a)	$2^{2x} + 2^4$ is wrong in line 2 - it	should be $2^{2x} \times 2^4$	B1	2.3
	In line 4, 2^4 has been replaced	by 8 instead of by 16	B1	2.3
			(2)	
(b)	<u>Way 1:</u>	<u>Way 2:</u>		
	$2^{2x+4} - 9(2^x) = 0$	$(2x+4)\log 2 - \log 9 - x\log 2 = 0$		
	$2^{2x} \times 2^4 - 9(2^x) = 0$		M1	2.1
	Let $2^x = y$			
	$16y^2 - 9y = 0$			
	$y = \frac{9}{16}$ or $y = 0$	logQ		
	So $x = \log_2(\frac{9}{16})$ or $\frac{\log(\frac{9}{16})}{\log 2}$	$x = \frac{\log y}{\log 2} - 4 \text{ o.e.}$	A1	1.1b
	o.e. with no second answer			
			(2)	
			(4 n	narks)
Notes:				
(a) B1: List	s error in line 2 (as above)			
B1: List	s error in line 4 (as above)			
	rect work with powers reaching rect answer here – there are man	-		

Question	Scheme	Marks	AOs
13(a)	$x^3 + 10x^2 + 25x = x(x^2 + 10x + 25)$	M1	1.1b
	$=x(x+5)^2$	Al	1.1b
		(2)	
(b)	y A cubic with correct orientation	M1	1.1b
	-5 0 x Curve passes through the origin (0, 0) and touches at (-5, 0) (see note below for ft)	A1ft	1.1b
		(2)	
(c)	Curve has been translated <i>a</i> to the left	M1	3.1a
	a = -2	A1ft	3.2a
	<i>a</i> = 3	A1ft	1.1b
		(3)	
		(7 n	narks)
Notes:			
	es out factor x ect factorisation – allow $x(x + 5)(x + 5)$		
Alft: Curv	The ect shape the origin $(0, 0)$ and touches at $(-5, 0)$ – allow a incorrect factorisation	v follow through	L
Alft: ft fro	be implied by one of the correct answers for <i>a</i> or by a statement om their cubic as long as it meets the <i>x</i> -axis only twice om their cubic as long as it meets the <i>x</i> -axis only twice		

Question	Scheme	Marks	AOs
14(a)	$\log_{10} P = mt + c$	M1	1.1b
	$\log_{10} P = \frac{1}{200}t + 5$	A1	1.1b
		(2)	
(b)	$\frac{\text{Wav 1:}}{\text{As } P = ab^{t} \text{ then}} \\ \log_{10} P = t \log_{10} b + \log_{10} a \\ P = 10^{\left(\frac{t}{200} + 5\right)} = 10^{5} 10^{\left(\frac{t}{200}\right)}$		2.1
	$\log_{10} b = \frac{1}{200}$ or $\log_{10} a = 5$ $a = 10^5$ or $b = 10^{\left(\frac{1}{200}\right)}$	M1	1.1b
	So $a = 100\ 000$ or $b = 1.0116$	Al	1.1b
	Both <i>a</i> = 100 000 and <i>b</i> = 1.0116 (awrt 1.01)	A1	1.1b
		(4)	
(c)(i)	The initial population	B1	3.4
(c)(ii)	The proportional increase of population each year	B1	3.4
		(2)	
(d)(i)	300000 to nearest hundred thousand	B1	3.4
(d)(ii)	Uses $200000 = ab^t$ with their values of a and b or $\log_{10} 200000 = \frac{1}{200}t + 5$ and rearranges to give $t =$	M1	3.4
	60.2 years to 3sf	Alft	1.1b
		(3)	
(e)	 Any two valid reasons- e.g. 100 years is a long time and population may be affected wars and disease Inaccuracies in measuring gradient may result in widel different estimates Population growth may not be proportional to population size The model predicts unlimited growth 	B2	3.5b
		(2)	

Quest	Question 14 continued	
Notes	•	
(a) M1	Illess a linear constitut to relate la p D and (
M1: A1:	Uses a linear equation to relate $\log P$ and t	
	Correct use of gradient and intercept to give a correct line equation	
(b) M1:	<u>Wav 1</u> : Uses logs correctly to give log equation; <u>Wav 2</u> : Uses powers correctly to "undo" log equation and expresses as product of two powers	
M1:	Way 1: Identifies log b or log a or both; Way 2: Identifies a or b as powers of 10	
A1:	Correct value for <i>a</i> or <i>b</i>	
A1:	Correct values for both	
(c)(i) B1:	Accept equivalent answers e.g. The population at $t = 0$	
(c)(ii) B1:	So accept rate at which the population is increasing each year or scale factor 1.01 or increase of 1% per year	
(d)(i) B1:	cao	
(d)(ii)		
M1:	As in the scheme	
A1ft:	On their values of <i>a</i> and <i>b</i> with correct log work	
(e) B2:	As given in the scheme – any two valid reasons	

Quest	ion Scheme	Marks	AOs
1:	Finds $\frac{dy}{dx} = 8x - 6$	M1	3.1a
	Gradient of curve at P is -2	M1	1.1b
	Normal gradient is $-\frac{1}{m} = \frac{1}{2}$	M1	1.1b
	So equation of normal is $(y-2) = \frac{1}{2} \left(x - \frac{1}{2} \right)$ or $4y = 2x+7$	A1	1.1b
	Eliminates y between $y = \frac{1}{2}x + \ln(2x)$ and their normal equation give an equation in x	to M1	3.1a
	Solves their $\ln 2x = \frac{7}{4}$ so $x = \frac{1}{2}e^{\frac{7}{4}}$	M1	1.1b
	Substitutes to give value for <i>y</i>	M1	1.1b
	Point <i>Q</i> is $\left(\frac{1}{2}e^{\frac{7}{4}}, \frac{1}{4}e^{\frac{7}{4}} + \frac{7}{4}\right)$	A1	1.1b
		(8 n	narks)
Notes	::		
M1:	Differentiates correctly		
M1:	Substitutes $x = \frac{1}{2}$ to find gradient (may make a slip)		
M1:	Uses negative reciprocal gradient		
A1:	Correct equation for normal		
M1:	Attempts to eliminate <i>y</i> to find an equation in <i>x</i>		
M1:	Attempts to solve their equation using exp		
M1:	Uses their x value to find y		
A1:	Any correct exact form		

Question	Scheme	Marks	AOs
16(a)	Sets $2xy + \frac{\pi x^2}{2} = 250$	B1	2.1
	Obtain $y = \frac{250 - \frac{\pi x^2}{2}}{2x}$ and substitute into P	M1	1.1b
	Use $P = 2x + 2y + \pi x$ with their y substituted	M1	2.1
	$P = 2x + \frac{250}{x} - \frac{\pi x^2}{2x} + \pi x = 2x + \frac{250}{x} + \frac{\pi x}{2} *$	A1*	1.1b
		(4)	
(b)	$x > 0 \text{ and } y > 0 \text{ (distance)} \Rightarrow \frac{250 - \frac{\pi x^2}{2}}{2x} > 0 \text{ or } 250 - \frac{\pi x^2}{2} > 0 \text{ o.e.}$	M1	2.4
	As x and y are distances they are positive so $0 < x < \sqrt{\frac{500}{\pi}}$ *	A1*	3.2a
		(2)	
(c)	Differentiates P with negative index correct in $\frac{dP}{dx}$; $x^{-1} \rightarrow x^{-2}$	M1	3.4
	$\frac{\mathrm{d}P}{\mathrm{d}x} = 2 - \frac{250}{x^2} + \frac{\pi}{2}$	A1	1.1b
	Sets $\frac{dP}{dx} = 0$ and proceeds to $x =$	M1	1.1b
	Substitutes their x into $P = 2x + \frac{250}{x} + \frac{\pi x}{2}$ to give perimeter = 59.8 M	A1	1.1b
		(4)	
	1		narks)

Ques	Question 16 continued Notes:	
Notes		
(a)		
B1:	Correct area equation	
M1:	Rearranges their area equation to make y the subject of the formula and attempt to use with an expression for P	
M1:	Use correct equation for perimeter with their y substituted	
A1*:	Completely correct solution to obtain and state printed answer	
(b)		
M1:	States $x > 0$ and $y > 0$ and uses their expression from (a) to form inequality	
A1*:	Explains that x and y are positive because they are distances, and uses correct expression	
	for <i>y</i> to give the printed answer correctly	
(c)		
M1:	Attempt to differentiate P (deals with negative power of x correctly)	
A1:	Correct differentiation	
M1:	Sets derived function equal to zero and obtains $x =$	
A1:	The value of x may not be seen (it is 8.37 to 3sf or $\sqrt{\left(\frac{500}{4+\pi}\right)}$)	
	Need to see awrt 59.8 M with units included for the perimeter	

Question	Sc	heme	Marks	AOs
17 (a)	$\frac{\text{Wav 1:}}{\text{Finds circle equation}}$ $(x \pm 2)^2 + (y \mp 6)^2 = (10 \pm (-2))^2 + (11 \mp 6)^2$	Wav 2:Finds distance between $(-2, 6)$ and $(10, 11)$	M1	3.1a
	Checks whether (10, 1) satisfies their circle equation	Finds distance between $(-2, 6)$ and $(10, 1)$	M1	1.1b
	Obtains $(x+2)^2 + (y-6)^2 = 13^2$ and checks that $(10+2)^2 + (1-6)^2 = 13^2$ so states that (10, 1) lies on C *	Concludes that as distance is the same (10, 1) lies on the circle C *	A1*	2.1
			(3)	
(b)	Finds radius gradient $\frac{11-6}{10-(-2)}$	or $\frac{1-6}{10-(-2)}$ (<i>m</i>)	M1	3.1a
	Finds gradient perpendicular to t	their radius using $-\frac{1}{m}$	M1	1.1b
	Finds (equation and) y intercept	of tangent (see note below)	M1	1.1b
	Obtains a correct value for y inte	ercept of their tangent i.e.35 or -23	A1	1.1b
	Way 1: Deduces gradient of second tangent	Way 2: Deduces midpoint of PQ from symmetry (0, 6)	M1	1.1b
	Finds (equation and) y intercept of second tangent	Uses this to find other intercept	M1	1.1b
	So obtains distance $PQ = 35 + 2$	23= 58*	A1*	1.1b
			(7)	
			(10 n	narks)

Question 17 continued	
Notes	
(a) <u>Way 1</u> and <u>Way 2</u> :	
M1: M1: A1*:	Starts to use information in question to find equation of circle or radius of circle Completes method for checking that (10, 1) lies on circle Completely correct explanation with no errors concluding with statement that circle passes through (10, 1)
(b) M1:	Calculates $\frac{11-6}{10-(-2)}$ or $\frac{1-6}{10-(-2)}$ (m)
M1:	Finds $-\frac{1}{m}$ (correct answer is $-\frac{12}{5}$ or $\frac{12}{5}$). This is referred to as <i>m'</i> in the next note
M1:	Attempts $y - 11 = their\left(-\frac{12}{5}\right)(x - 10)$ or $y - 1 = their\left(\frac{12}{5}\right)(x - 10)$ and puts $x = 0$, or
	uses vectors to find intercept e.g. $\frac{y-11}{10} = -m'$
A1:	One correct intercept $35 \text{ or} - 23$
<u>Way 1</u>	
M1:	Uses the negative of their previous tangent gradient or uses a correct $-\frac{12}{5}$ or $\frac{12}{5}$
M1:	Attempts the second tangent equation and puts $x = 0$ or uses vectors to find intercept
	e.g. $\frac{11-y}{10} = m'$
Way 2	
M1: M1:	Finds midpoint of <i>PQ</i> from symmetry. (This is at $(0, 6)$) Uses this midpoint to find second intercept or to find difference between midpoint and first intercept. e.g. $35 - 6 = 29$ then $6 - 29 = -23$ so second intercept is at $(-23, 0)$
Ways	1 and 2:

A1*: Obtain 58 correctly from a valid method